
REGULAR REPLEOTION 0F WEAK 

SHOOK WAVES PROM A R~G~D WALL 

(O~I~.@AR~O~qAMUmXZ 
vma ~ ~0: sTmax) 

PMM Voi.29, ~ i, 1965, pp.l14-121 

G.P. SHINDIAPIN 

(Saratov) 

(Received April 29, 1964) 

Problems of regular reflection of weak shock waves from a rigid wall cannot 
be investigated with the aid of the acoustic theory alone, since it is neces- 
sary to take account of the dependence of the basic parameters of the flow 
on the overpressure. The general principles of the theory of short waves, 
considering this dependence in the first approximation, were developed by 
Ryzhov and Khristianovich in [1]. 

In the same paper the problem of regular reflection in its nonlinear for- 
mulation was investigated for the first time. Exact solutions of a reflec- 
ted system of short waves were used for an approximate solution of the prob- 
lem. In this connection, the arbitrariness of the constants contained in 
the solutions was used to satisfy the boundary conditions approximately. 

In the present paper, the method of expansion of the unknown functions 
in series in a small parameter is used to solve the equations of short waves. 
The magnitude of the overpressure is taken as the small parameter. The form 
of the boundary condition which the solutions of the equations of short waves 
must satisfy at the shock front are presented. In the investigation of the 
problem of regular reflection, particular solutions of a system of short 
waves are sought in the form of a direct expression of the flow velocities 
as functions of the coordinates. This permits us to satisfy fairly accu- 
rately the couditlon of conservation of tangential velocity across the front 
of the reflected wave and all the other boundary conditions. The simple 
analytical form of the solution permits us to integrate the differential 
equation of the reflected shock wave, to find the coordinates of the front 
in closed form, and also to trace the continuous variation of the entire 
pattern of the reflection and of the velocity field as the basic data are 
varied in the range of regular reflection. Examples are given of the analy- 
sis of the flow in the case of a noncritical ~nd a critical value of the 
initial data. 

I. We shall present a derivation of the equations of short waves which 

is based on the expansion of the unknown functions in series in the small 

parameter p = p/(n2o) , where P is the overpressure, p@ is the initial 

pressure, and n is the constant ratio of specific heats (for air Po = latm, 

n - 1.4). 

The equatlonsof motion of a compressible gas for plane flows have the 

following form in cylindrical coordinates r, ~ : 
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Ou Pu ;', Ou v~ 1 Op 
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Here u and ~ a r e  t h e  p r o j e c t i o n s  o f  t h e  v e l o c i t y  v e c t o r  ~ i n  t he  

directions of the radius vector and the perpendicular thereto, p is the 

overpressure, p is the density, t is time. 

For weak shock waves, the process of compression may be considered to be 

very nearly adiabatic, which permits us to write the pressure-density rela- 

tion for air in the form 

p ~ t',, l(p/Oo) '~ - -  11 (1.2) 

where 0o is the initial density. 

Proceeding from the last relation, we shall now find the leading terms 

of the expressions for the basic parameters of the flow in series in the 

small values of p . 

From (1.2), we have for the density 

P / 9o :-: 1 -~- P - -  1/, z ( n  - -  ] )  _p2 (1.3) 

We have the shock conditions (dynamic compatibility) (~'Zi) 

p ( N  - -  qn) - -  P, ( N  - -  q,,~), p - -  p ,  = ~)1 ( N  - -  q . )  (q , ,  - -  q~n), q .  - -  q t~ 

for the velocity of propagation of the wave front 2/ in a medium with over- 

pressure p: and particle velocity q:, and also the normal and tangential 

components q, and gT of the particle velocity g behind the front of the 

shock wave. 

Applying (1.3) to these, we have, following [2], 

, 1, (n 3) P l ]  -k  ql~ N = a o [ l  q-  1 / 4 ( n  ~ l )  P ~ ~4 - -  

q,~ = ao ( P  - -  P t )  -? q , -  (1 .5 )  

If we consider that the overpressume Pt and velocity q~ correspond to 

the state behind the fornt of a wave ~L which propagates into undisturbed 

gas having zero overpressure, then q:,- sop: , and (1.5) assumes the form 

N :=: ao 11 q- II  4 (n -I- t )  (P  -t~ P l ) ] ,  q .  = aoP (1.6)  

Let r ~--- r (0, l) be the equation of the front of the shock wave, $ the 

angle between the normal to the shock front and the direction of the radius 

vector, 8 the angle between the direction of the radius vector and that 

of the particle velocity. We then have the following equations for the com- 

ponents u and o at the wave front: 

u - -  q= c o s ~  q-  q ,  s in  ~ ,  v = qn s in  ap - -  q ,  cos~p  ( t . 7 )  

q,, = q c o s  ( ~  - -  0) ,  q~ --= q s i n  ( , - -  0 ) ,  u~ O = v l u ,  t~,~b = r - l  Or  l oa} 
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On the line of discontinuity, for small values of the angle , and O , 
we shall have 

U = q (1 - -  1/2~2), V --- - -  U~, Or / Ot = N (~ ~ 1/2~2 ) (1 .8)  

The last one of these is obtained by equfitlng two expressions for the 

velocity of propagation of the shock front in the direction of the radius 

vector, Or / Ot : N sec ~ 

We now introduce the dimensionless functions M and V in accordance 

with [1] and the independent variables A, Y, • by means of the relations 

M - -  ~ v r y * 9) - - - - ,  V = - - ,  A . . . . .  :I, - -  , z = I n t  (1. 
ao ao aot Oo I/V~(n + 1 )  

where 0 o is some characteristic value of the angle. The third equation of 

(1.8) will then assume the following form upon substitution of the defini- 

tions of (1.9) and omission of terms known to be small: 

OA n + 1 ( p  j r  px)  + i (OA~* ( I A 0 )  
A + - ~  - -  ~ (n + t) Oo z \OY / 

Conslderlng ~ ~ g ~ I , it follows from the last equation and the remain- 

ing ones of (1.8) that 

A ~ P ,  Oo ~ P'/', M ~ P ,  V ~ P'/ '  ( t . t l )  
The relations which we have obtained determine the orders of magnitude 

of the parameters of the flow at the shock front. We shall consider that 

these orders of magnitude are also retained in some region adjoining the 

shock wave front. 

After small quantities of higher order are dropped, the equations of 

motion (1.1) in terms of the variables of (1.9) assume the form 

OM OP OV 1 OP 

OA Oh' OA Oo 1/1/2(n + l) OY 
(i .12) 

OM OP OP 

+ p O M  + i OV + M  : 0 

0A 0o 1/1/2 (n + t) OY 

Integrating the first equation of the system (I.12), we have ?4-P+ F(Y), 
where F(Y) is an arbitrary function. On the shock wave front we have 

M = (I- I/2~2) P~P , according to (1.8) and (1.6); therefore F(Y)~---0. 

Equations (1.12) then take the form 

OV 1 OM 
M = P ,  

cA Co 1/V~(n + t) oY 
(1.13) 

OM ( n + t  M A~ aM t OV + t_ M = O  
o~ + _  2 " - -  ) - ~ +  2OoVV~(n+~) aT 2 

which is basic fo r  the investigation of short waves. 

In order to investigate the system (i.13) taking account of the estimates 
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(i.Ii), it is convenient, following [i], to introduce 

M = Mo~, V = M o V  1/~ (n + 1) M o v  , 

where ~ is a c~racterlstic value of the n~ber 

tlons for short waves then ass~es the form 

i Ov i Ov O~ 
0---~ @ (~- -  6) + 20Y + - 2  ~ = 0' 06 OY 

Here in the case of self-similar flows 

A = I / 2 ( n + t ) M 0 8  

(i.14) 
M • The system of e q u a -  

=0, M = ~  (1.i5) 
~ / 5 ' r  = 0 . 

a. The differential equation which determines the position of the shock 

front is obtained from (i.I0) by introducing the notation of (1.14) 

= + _  + ÷ + 

We introduce further, in accordance with [I], a moving coordinate system 

x = ao t ( [ l  + 1/2(n + t) X ] ~ a o  t (1 + A - -  1/2~2 ) 
(2.2) 

y : aot V1/2  (n + 1) M o Y  ~ aot~ , ~ : X + 1/2Y2 

l~ion (9.i) then takes the form 

i OMo~ 08 % 
dY 

On the shock wave front Huygens condition for the normal component of the 

velocity is automatically satisfied, inasmuch as in the entire flow M and 

p are connected by the relation M -P/(n2 o ) • 

The conditions for conservation across the front of the velocity compo- 

nent tangent to the shock front is of the type 

a ~  - -  ~ --- U 1 (1~ -]- '0 -~- 0~), 6/1 = ql~ cos  # ~ ql,,  (2 .4 )  

where a is the angle formed by the direction of the velocity field ahead 

of the wave front and the axis ~ ~ 0. 

3. Let us examine the reflection of a plane, infinitely long wave 0K 

having overpressure P: by a rigid wall with a small discontinuity in dlrec- 

E f 

Fig. 1 

tlon a (Fig.l). The ma~tude o£ the break 

coincides with the angle of incidence 

formed by the shock wave front and the nor- 

mal to the wall at the point of intersec- 

tion. ~t this front propagate into undis- 

turbed gas havlr4~ zero overpressure. For a 

regular reflection (= greater than some 

critical angle a.), the front of the 

reflected wave 0E will consist, in the 

general case, of a straight line segment 
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0B with some constant pressure Po (the undisturbed front), a short arc BO 

where a rapid pressure drop from Po to P: occurs, and a circular arc CE, 

which is the f~ont of the acoustic wave and along which the pressure hardly 

differs at all from that behind the incident front. 

Thus, if the point R is chosen as the origin of coordinates and the axis 

~- 0 is directed along the wall, then in the region ARC'/) we shall have 

a rapid variation of pressure both in the direction of the radius vector and 

perpendicular to it, i.e. a flow of the short wave type. 

We now write out the boundary conditions of the problem. For the shock 

wave, using (2.4) and the notation of (1.14), we have 

Mt ~l~P + va = 0 on OK ( 3 . t )  
Lal = M--?' V 1/, ( .  + 1) Mo 

M "(p,--~l)¢ V ~ - p , I (  ~ -~ -y )  onOE (3.2) 
P' = M---~ ]/1/2 (n + t) M, I/U/2 (n -~- i) Mo 

Here, according to (2.1) 

t OMo~ 
, = (~ -~  ~o)'~'{~ [~(~ + ~o ~ ,  + ~ 1 - / ~  + ~)} '~' (~.~, 

At the front of the acoustic wave AB the velocity q may be considered 

with great accuracy as directed parallel to the wall, i.e. 

~Y ~ ~ ~- 0, v ~- 0 on the wall DA (3.4) 

Finally, we require that in approaching the point C along BC the front 

of the reflected wave pass into the acoustic circle CE , i.e. 

= ~1 ~or 51 i + M0 OT + = ~I (3.5) 

~. For the flow near the point 0 , Equations (3.1), (3.2) and (3.3) yield 

~ : ~ ,  ~:(~0) '~' (~+~0~,+~3 (~~) 
i OMo~ 

(4.2) 
From these we obtain the known conditions [i] for 8 and Me 

= Mo 1#1 - - - - c - ~  ' Mo % (n + t) \ t  - -  ~]  

The second equation of (4.1) gives the motion of the point 0 

( O~o~ ~o + "  ~ °  - ~ ~' ~ ~°~ 1, ~o = ~ (4 .4)  Mo + 0"~ ] lVio ~ -- ,, o\'-Tff -[- 2 / V'X/z (n + i) Mo 

Substituting the value of bat from (g.l) into the second equation of (4.3), 

we obtain the following relation for the determination of /4'o: 

M . . - ( ~ . +  ~,~)Mo + ( ~ . +  M.)~,~ =o (~.~) 
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As is ~own form [ I], of the two values of M e , the actual flow corres- 

ponds to the one with the value 

Mo = ~ ~ (n + i) M1 - -  ~r~-~ _ 2 (n + i)  a 'M1 ( 4 . 6 )  
n -k i 

Then the maximum relative overpressure 

M0 i i . ,  I a = ~ = - - a ~ + l - - - - a " ¥ a ~ 2 - - 4 ,  c ~ ' =  (4.7) 
MI D1 2 2 ) f  1/2 (n + i) M1 

assumes its largest value for ~ v  2, and 

a / V ' /2  (n -+ t )  M,  = 2 (4.8) 

Is the critical relation for regular reflection. Regular reflection must, 

therefore, be characterized by the condition C~ ~ 2 V '/2 (n ~- I) MI, which 

is imposed on the original parameters Mt and a , or equivalently, on pt 

and a • If for a definite M~ the angle corresponding to th~ condition 

(4.8) is considered as the critical value of the angle and is denoted by 

a, , then the condition of regular reflection is 

(z > c~, = 2V'i,,,., (n-J- 1) M,  (4.9) 
We shall consider the intensity of the incident wave 74, as constant. 

Then, according to (4.6), the value of /4o is also constant and, therefore, 

all the parameters which characterize the pattern of the reflection are also 

constant. That is, in the variables ~, v, 6, Y the pattern of the reflec- 

tion is self-slmilar and Equation (I.15) can be used to describe the flow in 

the zone of the short wave. Equation (~.4) then takes the form 

8o = l/~a, i 1/2~°2 (4.10) 

The flow parameters fl and P4o are determined in accordance with (4.3), 

and from the first equation of (4.2) we have 

ao = __t  - - ~  ( 4 . 1 1 )  

We obtain 

dh / d Y  = - -  V 2 8  - (9 -+- ~,) ( 4 . 1 2 )  

for the front of the reflected wave. 

This is used to determine the coordinates of the point 8, the intersec- 

tion of the reflected front with the acoustic circle. For the straight por- 

tion of the front, 0B , taking into account that 

~P = V ' / 2 ( n  ~- l )  M o d 6 / d Y  : ~ - - ~ ,  a 2 - - [  32 = ' / 2 ( n +  I )  M o 

we obtain from (g.12) 

The equation of the acoustic circle is 5 = 1 . From this the coordinates 

of the point B are 

~ - -  V t  - -  ~ t l ,  ~1 = t ( 4 . 1 3 )  Y1 : 1/ t  --  2~1 
The region of constant pressure disappears if the front of the acoustic 

wave AB overtakes the front of the incident wave. This occurs when y~ 
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becomes equal to zero. The coordinates of the point R will then be 

Y1 - -  O, 61 = 80 l /2Pl  ~ I/~o2 (4 .14)  

5 .  The s y s t e m  o f  e q u a t i o n s  o f  s h o r t  waves  ( l . 1 5 )  c o r r e s p o n d s  t o  E q u a t i o n  

p~2 .Dr_ (~t - -  8)  p85 ~-  I/2~XYY JV- ( k  - -  l )  [I, 5 =- O, k = 1/2 (5.1)  

We s e e k  a p a r t i c u l a r  s o l u t i o n  o f  t h i s  e q u a t i o n  i n  t h e  form ~ = F ( ¢ )  , 

C = 6 --o/~ . This gives 

= a8 - -  a (a - -  U~_) y2  _~_ a~ (5.2) 

where a and a, are arbitrary constants. According to the second equation 

of (1.17), we have 
v = - - 2 a ( a - -  1/=)y6 + / ( Y )  

After substitution into the first equation this yields 

/ '  (Y) --- a (21 A- t)  (a - -  1/2) Y~ - -  (21 + 1) a,  

Then taking Equation (3.5) into account, we obtain 

] ( Y )  = ' /aa (2a + t)  (a - -  1/2) y a  _ (21 -~ t)  S l Y  (5 .3)  

v = '~as (21 -4- t )  (a - -  1/2) ya  _ [21 (a - -  1/2) 8 q- (21 + t)  a 1] Y 

We shall now find the values of the constants a and a~ in the solutions 

(5.2), (5.3). According to (4.12) and (4.13) we have at point B 

a I ~-~ 1 - -  a(~ 1 -[- a (a  - -  1/2) Y12 (5.4)  

At point C(Y2, 5~) , Equation (3.6) now provides 

Y2 ff  + ' -  ~-q-+- ~ -  ~' = \ : (a - -  V:) ÷ y 2)'/: (5 .5 )  

On AB the condition (3.4) 

'~as (2a q- t )  ( a - -  '/2) y a _  [2a ( a - -  1/2) ( ~ 1 +  (2a -/- t)  (t - -  a61)1 Y - -  
- -  a (2a  q -  1) (a  - -  1/2) Y I 2 Y  ~- Y = 0 (5.6)  

is satisfied for Y ~< Y1 up to terms of third order in the small y , .  

From Equation (3.2) at point C we find the value of the coefficient a 

- -  '~as (21 q- t )  (a - -  1/2 ) Y2 a + {2a (a - -  '/2) ~tl + 

q- (2a q-- t )  [t - -  161 -t- a (a ~ 1/2) Y12]}  Y 2  = [Ltl (~o  _[_ Y2) (5.7)  

l.e. we have the final form of the solution 

=a(6-~1)- a(~-1/2)(Y2-Y1 ~)+I 
(5.8) 

v : 1~as (2a A- t)  (a - -  U2) y 3  _ {2a (a - -  1/2) 6 -L_ (2a ~ t)  [t - -  a(~ 1 -~- 

÷ a (a - -  1/2) Y12]} Y 

$. The equation of the reflected wave front 

d X / d Y  =-  - - Y  - -  V 2 5  - -  (1~ q- ~t,) 
may now be integrated. 8ubstltuting ~ from (5.8), we obtain 
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X '~ + 2 Y X '  + a (1 - -  a)  y 2  _ (2 - -  a)  X -4- ~1 -][- t - -  

- - a 6 1 +  a ( a - - U 2 )  Y1 ~ = 0 

The system of substitutions 

X : ~ - -  [11 -~- I -- (/81 + a ((/ -- 1//2) Y1 'z 
2 - - a  

x = Y ~ U  ( Y ) ,  V 2 = I - -  a ( l  --a)-4- ( 2 - - a )  U 

reduces this equation to the form 

2VdV d Y  
2V 2 + (2 -- a) V -- a (2a  - -  1) - -  Y 

integration yields 

[(V - -  a)  Y]~  [(V + ~) Y]~ = Ao,  
o ~ = t / 4  [ V t 7 a  2 -  t 2 a + 4 +  ( 2 - - a ) ]  

= '/4 [ V t 7 a '  - -  t 2 a  4- 4 - -  (2 - -  a)]  
o r  

y = Z - - z  V = Z a + z $  Z = A z - ~ ' / o  
a + ~  ' Z - - z  ' 

From the condition that the front passes through the point 

for A 

A = {(2 - -  a) 6o - -  [Pl + t - -  a ~  1 -~ a (a - -  1/2) Y 1 2 ] }  ~ 

The equation of the reflected wave in parameteric form 

(6A) 
0 , we o b t a i n  

(6 .2)  

y --___ A -- z 2~" 1 { 
(o~ + ~) z a/t3 ' X-- 2 - - ~  ~* -~- I -a6. -~" a 

( a - - 1 / 2 )  Y 1 2 +  ( ~ + ~ ) z ~ / ~  - -  [ t  - -  a ( l - - a ) l  Y~ (6.3) 

allows us to construct its front in a Cartesian coordinate system. 

T. As an example we present the analysis of the patterns of reflection 
corresponding to the cases ~i = 0.4 ((% >~,) and ~i = I/s (c~ ----- c~,). 

For ~, ~- 0.4, which gives ~o = 1.34,~ ---- 1.5 ~, (M0 = 2.5 Mx) ; he coordi- 
nates of 0 and B are: O(80 ---- 1.1, }To ---- 0) and B (61 ---- 1, Yx = 0.12) , 
respectively. According to (5.8) we have a = 0.633 and for point C 
(62 = 0 . 4 ,  Y~ = t . 6 2 ) .  

For ~, = I/s, we have ~o _ 1 . t 1 5 ,  ~ ---- 2~ , ( M o =  3 M , )  ; the coordinates 
of p, oint B are B(61=0.83, Yl = 0). The value of a . 0.792 and for point 
C (82---- I/3, Y2 = I08). 

In Figs 2 and 3 the calculated velocity fields are shown for these cases. 
That is, curves of equal ~ , which correspond to curves of equal pressure, 
are shown and the curves of the reflected wave fronts are constructed. 

The condition (3.2) of conservation of the tard~entlal component of the 
velocity vector on crossing the reflected wave front can be ~ ~ d  to 
be satisfied accurately, for the error in fuifilllng this comdltlon nowhere 
exceeds 1% relative to the quantity ~, ( so+ Y) 
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In conclusion, the author would llke to thank S.V. Fal'kovich for valu- 

able advice In his disscusslon of this paper. 
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