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Problems of regular reflection of weak shock waves from a rigid wall cannot
be 1lnvestigated with the aild of the acoustic theory alone, since it is neces-
sary to take account of the dependence of the basic parameters of the flow
on the overpressure., The general principles of the theory of short waves,
consldering this dependence 1n the first approximation, were developed by
Ryzhov and Khristianovich in [1].

In the same paper the problem of regular reflection in its nonlinear for-
mulation was investigated for the first time. Exact solutions of a reflec-
ted system of short waves were used for an approximate solution of the prob-
lem. In this connectlon, the arbltrariness of the constants contained in
the solutions was used to satisfy the boundary conditions approximately.

In the present paper, the method of expansion of the unknown functions
in series in a small parameter 1ls used to solve the equations of short waves,.
The magnitude of the overpressure is taken as the small parameter. The form
of the boundary condition which the solutions of the equations of short waves
must satisfy at the shock front are presented. In the investigation of the
problem of regular reflection, particular solutions of a system of short
waves are sought in the form of a dilrect expression of the flow veloclties
as functlons of the coordlnates. This permits us to satisfy falrly accu-
rately the coundition of conservation of tangential velocity across the front
of the reflected wave and all the other boundary conditions. The simple
analytical form of the solution permits us to integrate the differentilal
equation of the reflected shock wave, to find the coordinates of the front
in closed form, and alsa to trace the continuous variation of the entire
pattern of the reflection and of the velocity fleld as the basic data are
varied in the range of regular reflection. Examples are glven of the analy-
sis of the flow in the case of a noncritical aund a critical value of the
initial data.

1, We shall present a derivation of the equations of short waves which
is based on the expansion of the unknown functions in series in the small
parameter P = p/(nP,), where P 1s the overpressure, P, is the initial
pressure, and 5 1s the constant ratio of specific heats (for air Py =1latm,
n = 1.4).

The equations of motion of a compressible gas for plane flowsa have the
following form in cylindrical coordinates T,ff :
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Here y &and v are the projections of the velocity vector ¢ in the
directions of the redius vector and the perpendicular thereto, p 1s the

overpressure, p 18 the density, ¢ 1s time,

For week shock waves, the process of compression may be considered to be
very nearly adiabatic, which permits us to write the pressure-density rela-
tion for air in the form

p=Pylp/p)" — 1] (1.2)
where p, 1s the initial density.

Proceeding from the last relation, we shall now find the leading terms

of the expressions for the basic parameters of the flow in series in the
small values of p .,

From (1.2), we have for the density
p/py=1-+P—1Y,(n—1)P* (1.3)

We have the shock conditions (dynamic compatibility) (1.4)

PN —gn) =p(N—~qi), P—p1=p O — ) (gn— q1n)y 9= = i
for the velocity of propagation of the wave front ¥ in a medium with over-
pressure P, and particle velocity ¢,, and also the normal and tangential
components ¢, and q'r of the particle veloclty ¢ behind the front of the
shock wave.

Applying (1.3) to these, we have, following [2],
N = aoll +Ys(n+ 1) P =+ Y (n—3)P)+ ¢
gn = ag (P — P) F qum (1-5)
If we consider that the overpressure P, and velocity g, correspond to
the state behind the fornt of a wave ¥, which propagates into undisturbed
gas having zero overpressure, then g,,= 8,P,, and (1.5) assumes the form
= ag 1+ Yy (n -+ 1) (P -+ Pyl qn = a,P (1.6)
Let r = r (0, ) bve the equation of the front of the shock wave, y the
angle between the normal to the shock front and the direction of the radius
vector, p the angle between the direction of the radius vector and that
of the particle velocity. We then have the followlng equations for the com-
ponents y and v at the wave front:

u = gucosy + g.sin, U= gpsiny — g COSYP (1.7)
Gn = g cos (Y — 0), ¢. = g sin (p — 0), n@ = v/ u, wp=rlagr/ o0
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On the line of discontinuity, for small values of the angle y and ¢ ,
we shall have

u=q (1 —Y?, v = — uy, ar ] at = N (1 <4 1% (1.8)

The last one of these 1s obtalned by equfting two expressions for the
velocity of propagation of the shock front in the direction of the radius
vector, Or/ dt = N sec.

We now introduce the dimensionless functions ¥ and V¥ 1n accordance
with [1) and the independent variables A, Y, T by means of the relations

?

a 2 2 N ATEST,
where 6, 1s some characteristic value of the angle. The third equation of
(1.8) will then assume the following form upon substitution of the defini-
tions of (1.9) and omission of terms known to be small:

A  n+41 1 0A \2

A“"é?_ 4 (p'le)'i'(n-|-1)a[,2 (67)

Considering t1 ~ ¥ ~ 1
ing ones of (1.8) that

A~P, 0,~P" M~P, V~ph (1.11)
The relations which we have obtalned determine the orders of magnitude
of the parameters of the flow at the shock front. We shall conslder that
these orders of magnitude are also retained in some region adjoining the
shock wave front.

M= v A=l __q v= Y, t=Int (1.9)

(1.10)

, 1t follows from the last equation and the remain-

After small quantities of higher order are dropped, the equations of
motion (1.1) in terms of the variables of (1.9) assume the form

om__ op v _ 1P
A 0A’ oA 00V Ya(n +1) 8Y
(1.12)
oM oP oM opP arP
Se T e M —8) (G5 + 55) + (e —2) P 5 +
+P?ﬁ+ 1 W L p—o0

A ' 6 Via(nr1) oY

Integrating the first equatlon of the system (1.12), we have N=p+ p(Y),
where p(Y) is an arbitrary function. On the shock wave front we have
M = (1 — Y/?) P~ P, according to (1.8) and (1.6); therefore F (Y) =0.
Equations (1.12) then take the form

v 1 aM
M:P —_— = _____
’ A 8 V 2 1)y 9y
Vik(+1) (1.13)
OM | (nt1pr  A\OM t W o Lo
'a?+( 2 M A) A + 200V ia(n+1) oY + 2

which is basic for the investigation of short waves.

In order to investigate the system (1.13) taking account of the estimates
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(1.11), it 1s convenlent, following [1], to introduce

M=Mp, V=MVYn+1)Mp, A=Y, (n+1)Mp

0, =V M, (1.14)
where N, 18 a characteristic value of the number y . The system of equa-
tions for short waves then assumes the form

op op 1 ov 1. av p
W=t gy toh=0 z—s7=0 M=_5 (115

Here in the case of self-similar flows au/ar = O .

2. The differential equation which determines the position of the shock
front is obtained from (1.10) by introducing the notation of (1.14)

N 1 oM, a8 Ya
W——:l:{z[‘s (1+7W—0—3?)+—3;]—‘(H+H1)} (2.1)
We introduce further, in accordance with (1], a moving coordinate system

z=ait (1 +Yy(n+1) Xl ~apt (1 + A — 1/,0?

(2.2)
y=at VU, (n + 1) MyY ~ ait®, 8 = X + 1,Y?
Equation (2.1i) then takes the form
dX 1 oM ) A
W=—'Y:§:{2[5(1+m"57—0)+%—}—“(l"+l’«1)} (2.3)

On the shock wave front Huygens condition for the normal component of the
velocity is automatically satlsfied, inasmuch as in the entire flow ¥ and
P are connected by the relation ¥ <« P/(np,) .

The conditions for conservation across the front of the velocity compo=-
nent tangent to the shock front is of the type

oY — v =u (p + U - a Uy = ¢ COSY = Gyn (2.4)

where g 18 the angle formed by the direction of the veloclty field ahead
of the wave front and the axis O = (.

3., Let us examine the reflection of & plane, infinitely long wave 0OX
having overpressure P, by a rigid wall with a small dlscontinuity in direc-
tion o (Fig.l). The magnitude of the break
a coineldes with the angle of incidence
formed by the shock wave front and the nor-
mal to the wall at the point of interseoc-
tion. Let this front propagate into undis-
turbed gas having zero overpressure, For a
regular reflection (o greater than some
critical angle qo,), the front of the
reflected wave OF will consist, in the
general case, of a straight line segment




Regular reflection of weak shock waves from a rigid wall 125

0B with some constant pressure p, (the undisturbed front), a short arc B¢
where a rapid pressure drop from po, to P, occurs, and a circular arc (F,
which is the front of the acoustic wave and along which the pressure hardly
differs at all from that behind the incident front.

Thus, 1f the point R 18 chosen as the origin of coordinates and the axis
¥ = ( 1is directed along the wall, then in the region A4B(D we shall have
a rapld varlation of pressure both In the direction of the radius vector and
perpendicular to it, 1.e. a flow of the short wave type.

We now write out the boundary conditions of the problem. For the shock
wave, using (2.4) and the notation of (1.14), we have

_ M N U\ —0 on OK 3.1

p’l MO ’ .Vl————-————/z (" + 1) MO vl o ( )

M _e—m)y (____“__~ y) on OE (3.2
Y= Vhmoaom Vo M\Vneaoan (5-2)

Here, according to (2.1)

n 1 /2 1 61‘10 ad s
o= (S5 M) 2014 7,550 + e |~ mf” )
At the front of the acoustic wave A4p the velocity ¢ may be considered

with great accuracy as directed parallel to the wall, 1l.e.

pwY +-v =0, v=0 on the wall D4 (3.4

Finally, we require that in approaching the point (¢ along pBC the front
of the reflected wave pass into the acoustic circle CF , i.e.

1 oM a8
p=p,; for 61(1+M—0~8_E—°)+6—;=H1 (3.9)
4, For the flow near the point ¢ , Equations (3.1), (3.2) and (3.3) yleld
My n 1 1/2 1 M, 88o Ys
m= g o= ("5 M) 2 [0 (14 5 ) + T ) D

A—p)B=po, B= (M) {2[8 (1+ - %) + 2| =t + )"

(4.2)
From these we obtain the known conditions [1] for g and M,
1) B 1— 2 a \?
B= (T Myt My—= ——M [ = 4.3
2 " Vi—om T T VT (3.3)
The second equation of (4.1) gives the motlon of the point ¢
oM, 360 [ W a2 ° a
M 0 M, — =M (—— — 1, = (4.4
( o+ 61)0+ LaP 0 2+2) Vih 11 Mo (4.4)

Substituting the value of ., from (4.1) into the second equation of (4.3),
we obtain the followlng relation for the determination of N, :

M — (3207 + 2M,) M, + (ﬁ%oﬁ + M) M, =0 (4.5)
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As 18 known form [1], of the two values of M, , the actual flow corres-
ponds to the one with the value

M. — @t (n+ )M —Vat—2(@n +1)a2M, (4.6)
v n--1 )
Then the maximum relative overpressure
M, 1 1 1 _— a
—_—=—=—a? - Vi —4 = 4.7
M o 2 + 2 4 V(1) My &7

assumes 1ts largest value for &% == 2, and

al/Vinm-+1)M =2 (4.8)
is the critical relation for regular reflection., Regular reflectlon must,
therefore, be characterized by the condition o > 2]/1/2(n + 1) M,, which
1s imposed on the original parameters ¥, and o , or equivalently, on p,
and o . If for a definite p, the angle corresponding to the condition

(4.8) 18 considered as the critical value of the angle and 1s denoted by
ayx s then the condltion of regular reflectlon is

a o, =2VU, (n + 1) M; (4.9)
We shall consider the Intensity of the incident wave ¥, as constant.
Then, according to (4.6), the value of ¥, 1s also constant and, therefore,
all the parameters which characterize the pattern of the reflection are also
constant. That 1s, in the variables u, v, 6, ¥ the pattern of the reflec-
tion is self-similar and Equation (1.15) can be used to describe the flow in
the zone of the short wave. Equation (4.4) then takes the form

9 = Vapy |- (4.10)

The flow parameters g and §, are determined in accordance with (%.3),
and from the first equation of (4.2) we have

o A—m 4.11
“ = Vi e

We obtain
dd/dY = — V28 —( +pyp) (4.12)

for the front of the reflected wave.

This is used to determine the coordinates of the point 5, the intersec~
tion of the reflected front with the acoustic circle. For the straight por-
tion of the front, (0p , taking into account that

=V, (n+ 1) Mydo/dy =p — 9, a? — B2 =1, (n + 1) M,
we obtain from (4.12)
8 + BY — 1,Y? = Y, + Y0
The equation of the acoustlc circle 18 &6 = 1 ., From this the coordinates
of the point 5§ are

- e} — Vi _—_u 5, =1 4.13
Yl -V-I——_Tul Vi 130 1 ( )

The region of constant pressure disappears 1f the front of the acoustic
wave 4B overtakes the front of the incldent wave. Thls occurs when V¥,
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becomes equal to zero. The coordinates of the poilnt p will then be
| Y, =0, 8, = 8, — gy + Vo (4.14)
5, The system of equations of short waves (1.15) corresponds to Equation
pe® + (0 — O pss + Vopyy - (A —Hps = 0, k=1, (5.1)
We seek a particular solution of this equation in the form u = F(c) )
C =6 —¢c¥. This gives
p=ad —ala—1) Y4 a (5.2)
where @ and @, are arbltrary constants. According to the second equation

of (1.17), we have
v=—2a(a—Yy)YS + [ ()
After substitutlon into the first equation this ylelds

P ) =aRa+1)(a—1Y) Y — (2a +1)a,
Then taking Equation (3.5) into account, we obtain
FTY) =Y @2a—+1)(a —Y) Y? — (2a + 1) a,Y (5.3)
v="Y4a2a+1)(a—1)Y>— [2a(a — ") + (2a+1)alY

We shall now find the values of the constants @ and @, in the solutions
(5.2), (5.3). According to (4.12) and (4.13) we have at polnt B

' ay=1—ad, +afa— 1) Y? (5.4)
At point ¢(r,, 6,) , Equation (3.6) now provides
— & 1—m Ya

YZ = (a (p'l a (al?—‘*;/z) w + le) (5.5)

On 483 the condition (3.4)

Yia 20+ 1) (@ — Y3) Y® — [2a(a — ;) 8, + (2a 1) (1 — a1 Y —
—a@a+1)(@a—Y)Y2Y +Y =0 (5.6)

is satisfied for Y Y, up to terms of third order in the small Y.
From Equation (3.2) at point ( we find the value of the coefficlent a

—Ysa(2a + 1) (@ — ) Y2 + {2a (¢ — ) py +
+@a+1) M —ab,+ala— ) YEY, =p, (0° + Y,) (5.7)

i.e. we have the final form of the solution

p=a@® —8)—ala—1) (Y2 —Y2+1 55
ve=102a 1) (a—Y) Y —2a(a—1) 6 + (2a +1) 1 — ab, +

+a(a— Y)Y} Y
6. The equation of the reflected wave front

dX/dY = —Y — V28 —(u+py
may now be integrated. Substituting p from (5.8), we obtain
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X2+ 2YX'+a(l—a)Y? -2 —a) X +p, +1—
—ab,+a(a—Y) Y 2=0
The system of substitutions
g -1 — 1 2
X = pr -1 (;(31:};12(11 f2) Y1
z=YU(Y), VP=1—a(l—a+QC—aU
reduces this equation to the form

2vdv e ilf
V2 2Q—a)V —a(2a—1) Y
Integration ylelds

(V—a) Yl [(v + B) YI? = 4,,

o =Y, [V17a® =12a F & + (2 — a)]

B=1,V1Ta® —12a + 4 — (2 — a)l

or

Y = a+§ v BEB 7 g (6.1)

From the condition that the front passes through the point ¢ , we obtain
for 4

={2—a)8 — Iy +1 —ad; +ala— )Y
h=1,(a+p)/P (6.2)

The equation of the reflected wave in parameteric form

A— 2 1
Y=L X =g a{p,l—|—1—-a61—|—a
—1 2 AR P L — 2
(a /2)Y1+[(Q+B)zw] 1—a( a)]Y} (6.3)

allows us to construct its front in a Cartesian coordinate system.

T. As an example we present the analysis of the patterns of reflection
corresponding to the cases p, = 0.4 (@ >oa,) and p; =1/3 (@ =a,).

For p; = 0.4, which gives a° = 1.34,@ = 1.58, (Mo = 2.5 My) ; he coordi-
nates of 0 and B are: O@bo= 11 Y0—~0) and B (6, =1, Y, =0. ,
respectively. According to (5.8) we have @ = 0,633 and for point ¢
(62=04, Yg——-162)

For u,=1/,, we have o°=1.115, @ =28, (Mo= 3M;) ; the coordinates
of point 5 are B(;=0.83, Y; = 0). The value of @ = 0,792 and for point
C (82 =1/3, Y2 = 1.08).

In Filgs 2 and 3 the calculated veloclty flelds are shown for these cases.
That 1s, curves of equal . , which correapond to curves of equal pressure,
are shown and the curveas of the reflected wave fronts are comstructed.

The condition (3.2) of conservation of the tangential component of the
velocity vector on crossing the reflected wave front can be consldered to
be satisfiled accurately, for the error in fulfilling this condition nowhere
exceeds 1% relative to the quantity u, (a°+ Y)
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Fig. 3

In conclusion, the author would like to thank 8.V. Fal'kovich for valu-

able advice in his disscussion of this paper.
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